Ethylene Synthesis and Sensitivity in Crop Plants

Stephen P. Klassen and Bruce Bugbee

Crop Physiology Laboratory, Dept. of Plants, Soils and Biometeorology, Utah State Univ., Logan, UT 84322-4820, USA. Work supported by the National Aeronautics and Space Administration Advanced Life Support Program and by the Utah State Agricultural Experiment Station, Utah State Univ. Approved as journal paper No. . *Corresponding author (bugbee@cc.usu.edu).
Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C\textsubscript{2}H\textsubscript{4}). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by biotic and abiotic stresses but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.

Ethylene Sensitivity

An analysis of ethylene sensitivity should start with a review of ambient levels. The technically correct SI unit for gas concentration in air is the mole fraction, expressed as moles of gas per mole of air (mol mol-1). One ppm of a gas equals one micromole per mole of air, and one ppb equals one nanomole per mole of air (Table 1).

<table>
<thead>
<tr>
<th>SI Units</th>
<th>Volumetric Units</th>
<th>Unitless Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µmol mol-1</td>
<td>1 µL L-1</td>
<td>1 ppm</td>
</tr>
<tr>
<td>1 nmol mol-1</td>
<td>1 nL L-1</td>
<td>1 ppb</td>
</tr>
<tr>
<td>1 pmol mol-1</td>
<td>1 pL L-1</td>
<td>1 ppt</td>
</tr>
</tbody>
</table>
Abeles (1992) cites ethylene levels have been reported as high as 500 nmol mol\(^{-1}\) (500 ppb) in California and 700 nmol mol\(^{-1}\) (700 ppb) in Washington D.C., primarily attributed to automobile exhaust. We have been continuously monitoring the ethylene concentration in the air above the Utah State University Research Greenhouse in Logan, UT for the past 2 years. Levels are typically below the detectable limit of our gas chromatograph (about 1 nmol mol\(^{-1}\)), but during calm periods with heavy traffic (heavy for our town, anyway) levels can increase to 1 to 2 nmol mol\(^{-1}\). These measurements suggest that crop plants in agricultural areas are exposed to levels that average less than 1 nmol mol\(^{-1}\) from anthropogenic ethylene emissions. Biogenic emissions of ethylene from large agricultural areas could expose crops to much higher levels of ethylene if the rate of synthesis was high and turbulent mixing with the atmosphere was limited. However, atmospheric turbulence on even calm days is sufficient to keep ethylene levels within about 3 nmol mol\(^{-1}\) of ambient even during periods of peak ethylene synthesis from stressed crops (10 nmol per kg per second). Our calculations suggest that the biogenic contribution to ethylene levels in the air around unstressed plants would be less than 0.03 nmol mol\(^{-1}\) with a slight breeze.

Levels from 50 to 100 nmol mol\(^{-1}\) are common in greenhouses with heating or ventilation problems and have resulted in a broad range of crop damage in the horticulture industry (Blankenship and Kemble, 1996; Gibson et al., 2000; Mortensen, 1989). North Carolina State University provides helpful information on how to prevent C\(_2\)H\(_4\) problems in greenhouses and a service for
checking air samples posted on the web at www.ces.ncsu.edu/depts/hort/greenhouse_veg/. Levels as high as 1000 nmol mol\(^{-1}\) have been measured in controlled environments in both ground and space studies (Abeles et al., 1992; Salisbury, 1997; James et al., 1998). Elevated \(\text{C}_2\text{H}_4\) levels can cause a variety of abnormal responses including shortened height, epinasty, leaf rolling, premature leaf senescence, and sterility (Abeles et al., 1992; Bennet and Hughes, 1972; Morison and Gifford, 1984).

Elevated \(\text{C}_2\text{H}_4\) levels are of particular concern in tightly sealed bioregenerative life support systems, which are being developed for space by the National Aeronautics and Space Administration (NASA). The objectives of a bioregenerative life support system are to provide food, \(\text{O}_2\), \(\text{CO}_2\) removal, and water purification for long term space exploration. NASA has recognized that atmospheric \(\text{C}_2\text{H}_4\) may need to be scrubbed to prevent abnormal plant growth in space. Attempts at achieving normal plant growth and reproduction in the microgravity conditions of spaceflight have been plagued by problems associated with the gaseous environment (Musgrave et al., 1997). Elevated ethylene has been implicated as the cause of abnormal plant growth (roots, shoots, yield) in numerous space flight experiments (James et al., 1998; Kiss et al., 1998; Kiss et al. 1999; Levinski et al., 2000; Salisbury, 1997). Recent advances in catalytic scrubbing technology have significantly improved our ability to remove \(\text{C}_2\text{H}_4\) from air (Tibbitts et al., 1998). However, it is difficult to remove \(\text{C}_2\text{H}_4\) below 50 nmol mol\(^{-1}\) in closed plant growth chambers and this is still 10 to 50 times higher than levels in the field.
The threshold for ethylene sensitivity

A thorough understanding of the threshold concentration below which ethylene has no effect is imperative to eliminating ethylene effects in ground based research, greenhouse production, and in the microgravity environment of spaceflight. Abeles (1992) suggested threshold values of 100 ppb for periodic exposure and 50 ppb for chronic exposure and these values have been cited by other authors (e.g. Stutte, 1992). Unfortunately, these threshold concentrations are rough estimates based on incomplete studies. Our studies indicate that many crops are sensitive to chronic ethylene levels of 10 to 25 nmol mol\(^{-1}\) (Figs. 1 and 2). These studies were done in flow-through growth chambers using state of the art monitoring instrumentation (Klassen and Bugbee, 2001).

Genetic and environmental interactions with ethylene sensitivity

There is considerable genetic variability in C\(_2\)H\(_4\) sensitivity. Variation in post harvest flower longevity among carnations has been attributed to genetic variation in both C\(_2\)H\(_4\) synthesis and perception (Wu et al., 1991; Brandt and Woodson, 1992). We have observed significant differences in the ethylene sensitivity of closely related wheat cultivars (Klassen and Bugbee, 2001). Recent advances in the identification of genes associated with C\(_2\)H\(_4\) perception facilitate breeding C\(_2\)H\(_4\) tolerant genotypes (Barry et al., 2000; Bleeker and Kende, 2000; Bleeker and Schaller, 1996; Gubrium et al., 2000; Lindstrom et al. 1999).

Ethylene insensitive transgenic tomatoes, petunias, and tobacco have been developed by transformation with the *Arabidopsis* etr1-1 gene (Wilkinson et al., 1997). However, C\(_2\)H\(_4\) insensitive *Arabidopsis* mutants and transgenic
Fig. 1. A comparison of week old seedlings germinated in either clean air (left) or 25 nmol mol\(^{-1}\) ethylene (right). Typical responses included curled and stunted cotyledons, stunted first leaves, and etiolated petioles in lettuce.
plants can have abnormal developmental processes that affect seed germination, flower initiation, flower longevity, and fruit set (Bleeker et al., 1988; Gubrium et al., 2000).

In addition to genetics, environmental factors including light, temperature, O_2, and CO_2 influence C_2H_4 production (Abeles et al., 1992; Finlayson and Reid, 1996; Grodzinski and Woodrow, 1989; Preger and Gepstein, 1984; Sanders et al., 1990; Sisler and Wood, 1988). How these factors influence C_2H_4 perception is not well understood. Burg and Burg (1967) classified hypoxia (< 5% O_2) as an
inhibitor of \(\text{C}_2\text{H}_4 \) responses, but later studies found no effect of hypoxia on \(\text{C}_2\text{H}_4 \) binding activities in plants (Sanders et al., 1990).

Gubrium et al. (2000) observed significant differences between the temperature responses of insensitive transgenic petunias and wild-type plants, suggesting a possible interaction between temperature and \(\text{C}_2\text{H}_4 \) perception. We found that ethylene sensitivity decreased with increasing temperature in wheat (Fig. 3). As a gas, the water solubility of \(\text{C}_2\text{H}_4 \) decreases with increasing temperature so lower cytoplasmic \(\text{C}_2\text{H}_4 \) concentrations would occur at high temperature at a given atmospheric \(\text{C}_2\text{H}_4 \) concentration. This effect may contribute to reduced sensitivity with increasing temperature. However, based on the Ostwald coefficient for the distribution of \(\text{C}_2\text{H}_4 \) between gas and water, the cytoplasmic concentration only decreases about 0.25% per 1 °C between 15 and 23 °C or 2% over this temperature range (Sisler, 1991). Previously we showed that ethylene inhibited anther dehiscence in wheat and we now hypothesize that warmer temperatures promotes dessication of the anthers, improving pollination in ethylene exposed plants (Campbell et. al., 2001).

Carbon dioxide is of particular interest since it is normally high in space environments and is commercially used in fruit storage to inhibit the ripening action of \(\text{C}_2\text{H}_4 \) (Yang, 1985). Burg and Burg (1967) reported that \(\text{CO}_2 \) competitively inhibits \(\text{C}_2\text{H}_4 \) action, but only at very high levels (10%). Later studies suggested the inhibitory effects of \(\text{CO}_2 \) are non-competitive (Sisler, 1979; Sanders et al., 1990). We found no interaction between elevated \(\text{CO}_2 \) (1200 and
5000 mmol CO₂ mol⁻¹) and ethylene sensitivity in wheat (Klassen and Bugbee, 2001).

![Graph showing the effect of temperature on ethylene sensitivity in two closely related wheat cultivars.](image)

Fig. 3. Effect of temperature on ethylene sensitivity in two closely related wheat cultivars.

Ethylene Synthesis

Healthy plants synthesize ethylene to mediate developmental stages from germination to senescence. Despite the extensive literature on biological ethylene production, rates of whole plant synthesis are not well characterized. Table 2 summarizes the literature on ethylene production by crop plants. A wide range of units has been used in the literature and rates have often been presented as “per plant” or “per leaf” making it difficult to extrapolate to whole plant communities. Only values that could be converted to moles per unit dry weight per second are listed. The headspace method indicates that production
rates were based on the accumulation of ethylene in sealed containers. The time
of incubation, light level and experimental conditions are listed when possible.

Much of the confusion in the literature on rates of ethylene production has
been due to the use of excised plant tissues and inadequate environmental
control. Twenty-seven out of the 34 studies listed in table 2 measured ethylene
synthesis from excised tissues in sealed containers. It is well known that
mechanical perturbations and excision promote "wound ethylene" production.
Rates of ethylene production also vary with environmental conditions, which are
often not adequately controlled in closed systems. Spencer (1989) tested the
effect of light on ethylene production on excised tissues in a sealed vial and
compared this to measurements of intact plants in a flow-through system. He
found exactly opposite results between the two methods. The reason for this
discrepancy was shown to be due to a drop in CO₂ in the sealed vials of tissues
under the light (Kao and Yang, 1982). Finlayson and Reid (1996) demonstrated
that excised roots respond differently to CO₂ than intact plants and warned of the
danger of using excised tissues.

Investigations on the effects of water stress have also been subject to
problems with methodology. Morgan et al. (1990) showed that detached leaves
react differently to drying than intact plants and this was verified by Narayana et
al. (1991). Tong and Yang (1987) suggested that the temperature response of
ethylene synthesis was also different between leaf discs and intact plants.
Table 2 Ethylene production rates of stressed and unstressed crop plants referenced in the literature

<table>
<thead>
<tr>
<th>Plant</th>
<th>Tissue</th>
<th>C$_2$H$_4$ productiona</th>
<th>Timeb</th>
<th>Lightc</th>
<th>Stress/conditions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucumber</td>
<td>root</td>
<td>0.2</td>
<td>1-2</td>
<td>dark</td>
<td>control</td>
<td>Romera et al., 1999</td>
</tr>
<tr>
<td>Cucumber</td>
<td>root</td>
<td>0.3 - 0.4</td>
<td>1-2</td>
<td>dark</td>
<td>low Fe</td>
<td>Romera et al., 1999</td>
</tr>
<tr>
<td>Green Bean</td>
<td>whole seedling</td>
<td>0.1</td>
<td>open flow</td>
<td>150</td>
<td></td>
<td>Weckx et al., 1989</td>
</tr>
<tr>
<td>Lettuce</td>
<td>canopy</td>
<td>0.2</td>
<td>estimated</td>
<td></td>
<td></td>
<td>Wheeler et al., 1996</td>
</tr>
<tr>
<td>Pea</td>
<td>stem</td>
<td>0.01 - 0.1</td>
<td>headspace</td>
<td></td>
<td>dark</td>
<td>Burg and Burg, 1968</td>
</tr>
<tr>
<td>Pea</td>
<td>roots</td>
<td>0.3</td>
<td>headspace 2</td>
<td></td>
<td></td>
<td>Bertell et al., 1990</td>
</tr>
<tr>
<td>Rice</td>
<td>leaf</td>
<td>0.1 - 0.7</td>
<td>headspace 3</td>
<td></td>
<td>control</td>
<td>Yamauchi and Peng, 1995</td>
</tr>
<tr>
<td>Rice</td>
<td>root</td>
<td>0.2 - 0.6</td>
<td>headspace 2</td>
<td></td>
<td></td>
<td>Yamauchi and Peng, 1995</td>
</tr>
<tr>
<td>Rice</td>
<td>leaf</td>
<td>0.9 - 1.8</td>
<td>headspace</td>
<td></td>
<td>high Fe</td>
<td>Yamauchi and Peng, 1995</td>
</tr>
<tr>
<td>Rice</td>
<td>leaf</td>
<td>0.5</td>
<td>headspace 2</td>
<td></td>
<td>dark</td>
<td>Peng and Yamauchi, 1993</td>
</tr>
<tr>
<td>Rice</td>
<td>leaf</td>
<td>7.3</td>
<td>headspace 2</td>
<td></td>
<td>high Fe</td>
<td>Peng and Yamauchi, 1993</td>
</tr>
<tr>
<td>Soybean</td>
<td>whole seedling</td>
<td>0.4</td>
<td>open flow</td>
<td></td>
<td>dark</td>
<td>Weckx et al., 1989</td>
</tr>
<tr>
<td>Soybean</td>
<td>whole seedling</td>
<td>0.8</td>
<td>open flow</td>
<td>100</td>
<td></td>
<td>Weckx et al., 1989</td>
</tr>
<tr>
<td>Spinach</td>
<td>leaf laminae</td>
<td>0.3 - 0.6</td>
<td>headspace 24</td>
<td>100</td>
<td></td>
<td>Crevecoeur et al., 1986</td>
</tr>
<tr>
<td>Spinach</td>
<td>petioles</td>
<td>1.3</td>
<td>headspace 24</td>
<td>100</td>
<td></td>
<td>Crevecoeur et al., 1986</td>
</tr>
<tr>
<td>Spinach</td>
<td>whole plant</td>
<td>0.1</td>
<td>headspace 24</td>
<td>100</td>
<td></td>
<td>Crevecoeur et al., 1986</td>
</tr>
<tr>
<td>Tomato</td>
<td>whole plant</td>
<td>14.1</td>
<td>headspace 24</td>
<td>50</td>
<td>high NH$_3$</td>
<td>Corey et al., 1987</td>
</tr>
<tr>
<td>Tomato</td>
<td>whole plant</td>
<td>2.1</td>
<td>headspace 24</td>
<td>50</td>
<td>control</td>
<td>Corey et al., 1987</td>
</tr>
<tr>
<td>Tomato</td>
<td>leaf</td>
<td>0.6</td>
<td>headspace</td>
<td></td>
<td>high H$_2$O</td>
<td>Basiouny et al., 1994</td>
</tr>
<tr>
<td>Tomato</td>
<td>leaf</td>
<td>0.5</td>
<td>headspace</td>
<td></td>
<td>low H$_2$O</td>
<td>Basiouny et al., 1994</td>
</tr>
<tr>
<td>Tomato</td>
<td>leaf</td>
<td>0.4</td>
<td>headspace</td>
<td></td>
<td></td>
<td>Basiouny et al., 1994</td>
</tr>
<tr>
<td>Tomato</td>
<td>root</td>
<td>0.7</td>
<td>headspace 2</td>
<td></td>
<td>dark</td>
<td>Romera et al., 1999</td>
</tr>
<tr>
<td>Tomato</td>
<td>root</td>
<td>1.4 - 2.5</td>
<td>headspace 2</td>
<td></td>
<td>dark low Fe</td>
<td>Romera et al., 1999</td>
</tr>
<tr>
<td>Wheat</td>
<td>whole seedling</td>
<td>0.3</td>
<td>open flow</td>
<td></td>
<td></td>
<td>Weckx et al., 1989</td>
</tr>
<tr>
<td>Wheat</td>
<td>whole seedling</td>
<td>0.6</td>
<td>open flow</td>
<td>100</td>
<td></td>
<td>Weckx et al., 1989</td>
</tr>
<tr>
<td>Wheat</td>
<td>canopy</td>
<td>0.1</td>
<td>estimated</td>
<td></td>
<td></td>
<td>Wheeler et al., 1996</td>
</tr>
<tr>
<td>Wheat</td>
<td>leaf</td>
<td>0.8</td>
<td>headspace 12</td>
<td></td>
<td>seedlings</td>
<td>Narayana et al., 1991</td>
</tr>
<tr>
<td>Wheat</td>
<td>leaf</td>
<td>0.3 - 0.5</td>
<td>headspace 12</td>
<td></td>
<td>6 wk old</td>
<td>Narayana et al., 1991</td>
</tr>
<tr>
<td>Wheat</td>
<td>root</td>
<td>0.4</td>
<td>headspace 2</td>
<td></td>
<td>Control & Fe deficient</td>
<td>Romera et al., 1999</td>
</tr>
<tr>
<td>Wheat</td>
<td>leaf</td>
<td>0.3</td>
<td>headspace 2</td>
<td></td>
<td>control</td>
<td>Tonutti and Ramina, 1991</td>
</tr>
<tr>
<td>Wheat</td>
<td>leaf</td>
<td>3.8</td>
<td>headspace 2</td>
<td></td>
<td>O$_2$ Stress</td>
<td>Tonutti and Ramina, 1991</td>
</tr>
<tr>
<td>Wheat</td>
<td>root</td>
<td>0.3</td>
<td>headspace 2</td>
<td></td>
<td>control</td>
<td>Tonutti and Ramina, 1991</td>
</tr>
<tr>
<td>Wheat</td>
<td>root</td>
<td>0.5</td>
<td>headspace 2</td>
<td></td>
<td>O$_2$ Stress</td>
<td>Tonutti and Ramina, 1991</td>
</tr>
</tbody>
</table>

a. Assuming dry mass is 10% of fresh mass
b. Time in sealed vial prior to headspace analysis
c. Light level while in sealed vial
Many studies have examined root production of ethylene, but nearly all of them have used excised root tissue. Mechanical impedance of root elongation caused by tightly packed substrates can increase ethylene synthesis in roots. The rate of root ethylene production can differ significantly from ethylene in the shoots. Because there is minimal convective air movement in the root zone, the ethylene produced by roots must be dispersed by diffusion. This can result in unusually high ethylene levels in the gas phase of the root zone. Independent, simultaneous measurements of root-zone ethylene production would therefore be highly useful.

Production rates can be 10 to 20 times higher in stressed plants.

Environmental conditions that influence ethylene production include:

1. Kao and Yang (1982) determined ethylene production in the light increases with increasing CO$_2$ due to its promotion of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity, the enzyme responsible for the last step in ethylene synthesis.

2. Bradford and Dilley (1978) demonstrated that hypoxia promotes ethylene production in the roots shoots of tomato.

3. Xu and Qi (1993) found no effect of slowly developing drought stress on ethylene production, but that rapidly developing drought stress promoted ethylene production.

4. Field and Barrowclough (1989) found that ethylene production increased with temperature.
5. Gepstein and Thimann (1980) observed lower ethylene production rates in the light than in the dark in a variety of dicots and monocots.

6. Vangronsveld et al. (1988) concluded that red light significantly reduced ethylene biosynthesis in etiolated bean seedlings.

7. Morgan, et al. (1993) demonstrated that increasing physical impedance of the rooting medium increases ethylene production by roots.

Root-zone hypoxia

Although the conversion of ACC to ethylene is oxygen dependent, hypoxia induced by flooding promotes the synthesis of ACC in the roots of tomato, which is transported to the shoots and rapidly oxidized to ethylene (Bradford and Yang, 1980). Hypoxia increased ethylene production in both roots and leaves of tomato resulting in leaf epinasty and chlorosis (Bradford and Dilley, 1978; Morgan and Drew 1997). Similarly, hypoxia has been shown to increase endogenous ethylene concentrations in tissues of many crops including wheat, maize, rice and radish (Atwell et al., 1988; Kawase, 1972; Tonutti and Ramina, 1991). This response can be rapid. The ethylene production rate of wheat leaves doubled within two hours of exposure to 10% O₂ in the root-zone (Tonutti and Ramina, 1991). Changes in production rates can be dramatic. Hypoxia increased ethylene synthesis up to 8 fold in roots and 15 fold in shoots (Atwell et al., 1988; Tonutti and Ramina, 1991). The difficulty of uniformly distributing water and air throughout the root-zone in microgravity has made inadequate root-zone aeration a common stress.
Water stress

Inconsistencies in the literature on the effect of water stress on ethylene production provide a clear example of inadequate experimental methods in ethylene research. Studies involving the desiccation of detached leaves suggest water stress increases ethylene production but studies of intact plants subject to water stress suggest decreased ethylene synthesis (Morgan et al., 1990; Narayana et al., 1991). The current consensus is that the effect of water stress on ethylene synthesis depends on the rate at which the plants are stressed. Rapid induction of water stress promotes ethylene production and slow induction inhibits production (Morgan and Drew, 1997; Xu and Qi, 1993). Reduced ethylene production is expected in the field since drought stress typically occurs slowly. However, water stress occurs rapidly in highly porous media, especially when the root-zone volume is restricted. The rapid induction of water stress in these conditions would probably increase ethylene synthesis.

Root-zone mechanical impedance

Sarquis et al. (1991) tested the effect of physical impedance (simulated by applied pressure on a fritted clay rooting medium) on ethylene production in the roots of maize seedlings in a flow-through system. Ethylene production rates increased from 0.1 in the control to 0.3 nmol kg\(^{-1}\)\(_{DW}\) s\(^{-1}\) when a pressure of only 25 kPa was applied, and then to 0.7 nmol kg\(^{-1}\)\(_{DW}\) s\(^{-1}\) at 100 kPa after 10 hours of treatment (Fig. 4). Root elongation was significantly inhibited. The effects of pressure on root elongation and radial expansion were similar to the effects of applied ethylene. When ethylene production in impeded roots was inhibited,
elongation increased to 90% of the control, suggesting that ethylene causes the roots to overreact to the impedance.

Fig. 4. Ethylene production and root elongation as a function of physical impedance in the growing medium (adapted from Sarquis, 1991).

High temperature stress

Ethylene synthesis typically increases with temperature, probably because the enzyme activity responsible for ethylene synthesis increases. Field (1981a, b) found that ethylene production in bean leaf discs increased with temperature from 2.5 to 35 °C. Above 35 °C production rates declined and reached a minimum at 45 °C. The ethylene production rate doubled (from 0.25 to 0.5 nmol kg\(^{-1}\)DW s\(^{-1}\)) between 25 and 35 °C. These studies were based on tissues excised from plants grown at 25 °C and incubated at various temperatures. An 18 h pre-incubation period was used to differentiate between basal and wound ethylene.
While trying to interpret differences between the temperature response of intact carnations and bean leaf discs, Field and Barrowclough (1989) specifically state that the method involving the use of bean leaf discs was designed to measure temperature induced changes in “wound ethylene”. Lurie et al. (1996) found heat shock temporarily reduced ethylene production in tomato leaves but Aloni et al. (1995) determined that the use of the ethylene action inhibitor STS reduced heat stress induced flower abscission in pepper. No studies have been found characterizing ethylene production rates as a function of temperature for intact plants.

Quantity and quality of photosynthetic radiation

Light intensity has been shown to both increase and decrease ethylene production. Many earlier studies that implicated light as an inhibitor of ethylene production have since been discredited due to a lack of control of CO$_2$ (Grodzinski, 1984; Kao and Yang, 1982; Weckx and Van Poucke, 1989). Even when CO$_2$ levels have been controlled, the effect of light intensity on ethylene production has been mixed. Grodzinski (1984) found little difference between light and dark rates of ethylene production in C$_3$ plants but higher rates in the light in C$_4$ plants. Others have reported that light increased ethylene production in a variety of monocots and dicots but did not test light levels higher than 150 µmol m$^{-2}$ s$^{-1}$ (Knee et al., 2000; Weckx and Van Poucke, 1989). Bassi and Spencer (1983) reported that light had no effect on ethylene production by intact plants of tobacco, sunflower, soybean, and tomato in a flow-through system. The
effect of light intensity on the ethylene production of intact plants throughout the life cycle has not been examined.

Light quality has also been shown to effect ethylene production both positively and negatively and is regulated in part by phytochrome (Finlayson et al., 1998; Vangronsveld et al., 1988; Corbineau et al., 1995). These studies all indicate a complex relationship between phytochrome and ethylene production that needs further study. How different light sources with different spectral characteristics (LED, fluorescent, HPS, and metal halide) affect ethylene production remains untested.

Ethylene Mutants

The rate of identification of ethylene mutants has rapidly increased in the past decade. More then 20 ethylene mutants have been identified that are altered in their ability to synthesize, perceive, or respond to ethylene. The largest collection of mutant phenotypes exists for the model higher plant *Arabidopsis thaliana*. Additional ethylene mutants have been isolated for tomato, tobacco, and petunia. These mutants have been primarily used to elucidate the genes responsible for ethylene synthesis and perception, but the *Arabidopsis* collection of mutants also provides the opportunity to study the effect of environmental stress on ethylene synthesis and sensitivity.

Ethylene synthesis mutants

Ethylene synthesis mutants have reduced or eliminated capacity to synthesize ethylene. The enzyme ACC-synthase catalyzes the rate-limiting step in ethylene synthesis (Tarun et al., 1998) and ACC-oxidase catalyzes the
formation of ethylene from ACC. Mutants without these enzymes produce minimal amounts of ethylene.

Ethylene perception mutants

Ethylene perception mutants fail to perceive ethylene. These mutants consist of members of the ethylene receptor gene family and their mutation results in a lack of ethylene binding to begin the signal transduction necessary to elicit hormonal response (Schaller and Bleeker, 1995; Sakai et al., 1998; Hua et al., 1998). The breeding lines with mutations in the genes ETR1-3, EIN2-1, and EIN4 are highly insensitive to atmospheric ethylene. Even in the presence of 10 ppm ethylene, these mutant genotypes have root and shoot elongation similar to wild-type in ethylene-free air (Roman et al., 1995).

Selective perception mutants

Ethylene elicits many developmental responses. Selective perception mutants have selectively altered ethylene responses. These mutants affect biochemical changes that are downstream from the initial ethylene binding. Some of these mutants lack one of the ethylene responses without affecting other responses. For example, the mutant eir1 has a normal ethylene response in the shoot but lacks sensitivity in the roots, although the roots fail to respond to gravity (Roman et al., 1995). The so-called hook-less mutant (hls1-1) lacks the typical ethylene response of seedlings, but has accelerated development with much earlier flowering than non-mutated plants (Guzman and Ecker, 1990).

Mutants may exist that are insensitive to ethylene during anthesis but respond to ethylene during all other stages of development. These mutants
would reduce the likelihood of causing undesirable hormone interactions with GA
during germination, or auxin for gravitropism and phototropism. Unfortunately,
mutants that fail to perceive or respond to ethylene typically produce more
ethylene (Guzman and Ecker, 1990). This appears to occur as a result of a
feedback response from a lack of ethylene perception. Using a double mutant
that lacked the ability to both synthesize and perceive ethylene would reduce its
sensitivity to atmospheric ethylene and minimize its own ethylene synthesis.

Disadvantages of ethylene mutants

Ethylene mutants often have altered rates of development. Flowering in
Arabidopsis mutants is either earlier or slightly delayed depending on the mutant
(Guzman and Ecker, 1990). Ethylene-insensitive petunias were found to have
earlier flowering, delayed flower senesence, slightly reduced seed set, and
delayed ripening (Gubrium et al., 2000). Smalle and Van Der Straeten (1997)
reviewed the ethylene mutants and suggested that both ethylene-insensitive and
ethylene-synthesis mutants have normal development. They point out, however,
that the normal ethylene responses to stress are critical to the survival of the
plant. Several studies have indicated increased disease susceptibility for
ethylene-insensitive mutants (Hoffman et al., 1999; Knoester et al., 1998;
Thomma et al., 1999). Hoffman et al. (1999) suggest that ethylene insensitivity
may increase disease susceptibility for some pathogens but decrease it for
others.
Ethylene Inhibitors

In addition to genetic manipulations, ethylene synthesis and action can be controlled with the use of inhibitors. Numerous inhibitors have been identified and described (Abeles, 1992; Sisler, 1991). Those most commonly used in horticulture are listed in Table 3. Owens et al. (1971) found that rhizobitoxin, an amino acid secreted by microorganisms, inhibited C2H4 production. This led to the development of a synthetic analogue aminoethoxy-vinylglycine (AVG) and aminooxyacidic acid (AOA). Production inhibitors AVG, AOA, and l-canaline (CAN) all inhibit the formation of ACC, the immediate precursor to ethylene (Abeles, 1992). AVG has recently become commercially available and is used for extending apple maturation and improving post-harvest quality. Cobalt ions are another commonly used inhibitor of C2H4 production and inhibit the final step in conversion of ACC to C2H4.

Silverthiosulfate (STS) is highly xylem mobile and an effective action inhibitor but the mechanism of inhibition remains uncertain. Norbornadiene (NBD) is an effective competitive inhibitor that binds to the receptor. However, silver is a heavy metal, and NBD a possible carcinogen, so both these inhibitors are potentially hazardous. Methylcyclopropene (MCP) is also a competitive inhibitor, it exists as a gas, is non-toxic at active concentrations, and has been commercially available since 2002, making it the inhibitor of choice for regulating ethylene effects on fruits, vegetables, and flowers (Sisler and Serek, 1997). As with C2H4 mutants, the use of inhibitors has been found to alter plant growth and development, so caution must be used when interpreting experimental data.
Table 3. Commonly used C$_2$H$_4$ Inhibitors

<table>
<thead>
<tr>
<th>Synthesis Inhibitors</th>
<th>Action Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoethoxyvinylglycine (AVG)</td>
<td>Silverthiosulfate (STS)</td>
</tr>
<tr>
<td>Aminooxyacidic acid (AOA)</td>
<td>2,5-Norbornadiene (NBD)</td>
</tr>
<tr>
<td>L-canaline (CAN)</td>
<td>Methylcyclopropene (MCP)</td>
</tr>
<tr>
<td>Cobalt ions, Co(II)</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

Our studies suggest the threshold concentration for ethylene at which pollination and seed set are inhibited in both monocots and dicots is approximately 10 nmol mol$^{-1}$ (10 ppb). The threshold concentration for inhibition of leaf expansion and vegetative growth is about 30 nmol mol$^{-1}$ (30 ppb). How ethylene sensitivity interacts with the environment is not well documented. We found that elevated CO$_2$ does not interact with ethylene sensitivity in wheat, but a warmer temperature was found to decrease ethylene induced sterility in wheat. Genetic differences in sensitivity exist between species and among closely related cultivars. The interaction between genetic and environmental differences needs further study.

Reported rates of synthesis range 20 fold from 0.1 to 2.0 nmol kg$_{DW}^{-1}$ s$^{-1}$ in roots and shoots of healthy plants. We know that ethylene production increases in response to plant stress and that the results of many studies have been confounded by the use of excised tissues and inadequate environmental control. Clearly, studies on ethylene synthesis are best conducted with flow-through systems on intact plants. Few studies have used flow-through systems due to the difficulty of accurately measuring low levels of ethylene.
Recent advances in air monitoring technology such as the advent of systems for automated thermal desorption greatly simplify and improve the capability for direct analysis of low ethylene concentrations in air. This instrumentation can be integrated with multiple chamber flow-through systems that have traditionally been used for gas exchange studies. We are currently setting up such a system and plan to characterize whole plant basal and stress induced ethylene synthesis rates throughout the lifecycle of crop plants and known ethylene mutants. The characterization of ethylene mutants and new inhibitors also provide us with powerful techniques for controlling \(\text{C}_2\text{H}_4 \) synthesis and sensitivity in closed environments.
Literature Cited

of methods for the removal of ethylene and other hydrocarbons from air for

Evans (ed.) Crop Physiology. Cambridge University Press, NY.

Field, R.J. 1981a. The effect of low temperature on ethylene production by leaf

Field, R.J. 1981b. A relationship between membrane permeability and ethylene

Field, R.J. 1984. The role of 1-aminocyclopropane-1-carboxylic acid in the control
of low temperature induced ethylene production in leaf tissue of Phaseolus

Field, R.J. and P.M. Barrowclough. 1989. Temperature-induced changes in
ethylene production and implications for post-harvest physiology. P. 191-199. In
H. Clijsters et al. (eds.) Biochemical and Physiological Aspects of Ethylene

Kiss, J.Z., W.J. Katmebe, and R.E. Edelmann. 1998. Gravitropism and
development of wild-type and starch-deficient mutants of Arabidopsis during

Klassen, S.P. and B. Bugbee. 2001. Sensitivity of what and rice to low levels of

levels on USU-Apogee and Super Dwarf Wheat. Proceedings of the 29th
International Conference on Environmental Systems, administered by the Society
of Automotive Engineers (SAE). Paper number SAE 99ES-207.

Knee, E.M., R.P. Hangarter, and M. Knee. 2000. Interactions of light and
ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings.

Linthorst. 1998. Ethylene-insensitive tobacco lacks non-host resistance against

roots and shoots during reproductive growth of wheat. Plant, Cell and
Environment 11: 517-523.

SIS, Inc. 1995. Selection and use of adsorbent resins for purge and trap thermal desorption applications, short path thermal desorption application note no. 32.

Weerasak, L., T.G. Hartman, and E. Butrym. 1999. Purge and trap thermal desorption GC analysis methodology for sampling ethylene emission from living
plant and waste processing biofilter. 29th International Conference on
Environmental Systems, Denver, CO. SAE # 1999-01-2063.

confers ethylene insensitivity in heterologous plants. Nature Biotechnol. 15:444-
447.

esculentum Mill. leaves during short- and long-term exposures to CO₂. J. Exp.

Wu, M.J., L. Zacarias, and M.S. Reid. 1991. Variation in the senescence of
carnation (Dianthus caryophyllus L.) cultivars. II. Comparison of the sensitivity to

Xu, C.C. and Z. Qi. 1993. Effect of drought on lipoxygenase activity, ethylene and ethane formation